Difference between revisions of "Keywords and settings new"
Line 24: | Line 24: | ||
* >0 : Set this total pressure in bar and scale starting pressures proportionately. | * >0 : Set this total pressure in bar and scale starting pressures proportionately. | ||
| -1 (Take starting pressures) | | -1 (Take starting pressures) | ||
− | | 0 | + | | float > 0 or negative value |
|- | |- | ||
|} | |} | ||
Line 38: | Line 38: | ||
| Define the folder used for re-running sensitivity analysis and graphs | | Define the folder used for re-running sensitivity analysis and graphs | ||
| run | | run | ||
− | | | + | | string |
|- | |- | ||
| RERUN_GRAPH | | RERUN_GRAPH | ||
Line 50: | Line 50: | ||
| Set the absolute tolerance for a TPD run | | Set the absolute tolerance for a TPD run | ||
| 1e-12 | | 1e-12 | ||
− | | | + | | float > 0 |
|- | |- | ||
| RELTOL | | RELTOL | ||
| Set the relative tolerance for a TPD run | | Set the relative tolerance for a TPD run | ||
| 1e-12 | | 1e-12 | ||
− | | | + | | float > 0 |
|- | |- | ||
| CACHE_WORKPOINT | | CACHE_WORKPOINT | ||
Line 71: | Line 71: | ||
| ORDERSDIFF | | ORDERSDIFF | ||
| Step size used in the linear fitting of reaction orders (fractional pressure) | | Step size used in the linear fitting of reaction orders (fractional pressure) | ||
− | * Wide | + | * Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 |
| 0.01 | | 0.01 | ||
− | | float | + | | float > 0 |
|- | |- | ||
| EACTDIFF | | EACTDIFF | ||
| Step size used in the linear fitting of the apparent activation energy (fractional temperature) | | Step size used in the linear fitting of the apparent activation energy (fractional temperature) | ||
− | * Wide | + | * Example values: Wide = 0.001 | Normal = 0.0001 | Tight = 0.00001 |
| 0.0001 | | 0.0001 | ||
+ | | float > 0 | ||
|- | |- | ||
| DRCDIFF | | DRCDIFF | ||
| Step size used in the linear fitting for the degree of rate control analysis (fractional k) | | Step size used in the linear fitting for the degree of rate control analysis (fractional k) | ||
− | * Wide | + | * Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 |
| 0.01 | | 0.01 | ||
+ | | float > 0 | ||
|- | |- | ||
| TDRCDIFF | | TDRCDIFF | ||
| Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol) | | Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol) | ||
− | Wide | + | * Example values: Wide = 10 | Normal = 1 | Tight = 0.1 |
| 1 | | 1 | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | BOOSTER | ||
+ | | Multiplier used to speed-up reaction rates; sometimes leads to faster convergence towards the steady-state solution (time is scaled inversely to compensate) | ||
+ | | 1.0 (regular speed) | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | SOLVERTYPE | ||
+ | | Type of integration method to use for solving the system of ordinary differential equations | ||
+ | * 1 = BDF | ||
+ | * 2 = ADAMS | ||
+ | | 1 (BDF) | ||
+ | | 1 or 2 (int) | ||
+ | |- | ||
+ | | SOLSTOPTIME | ||
+ | | Specificies when the solver should re-evaluate the Jacobian matrix. A value of 1 means at every time step. | ||
+ | | 1.0 | ||
+ | |- | ||
+ | | SOLMAXSTEP | ||
+ | | Maximum number of internal steps the solver is allowed to take. | ||
+ | | 5000 | ||
+ | |- | ||
+ | | SOLTESTFAIL | ||
+ | | Maximum number of test failures before the solver gives up | ||
+ | | 70 | ||
+ | |- | ||
+ | | SOLCONVFAIL | ||
+ | | Maximum number of convergence failures before the solver gives up | ||
+ | | 100 | ||
|- | |- | ||
| PRECISION | | PRECISION | ||
Line 129: | Line 160: | ||
| Whether to create plots | | Whether to create plots | ||
| 1 | | 1 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|} | |} |
Revision as of 10:45, 23 March 2020
Settings block
The list below is an overview of all the keywords that can be placed inside the &settings
block. All keywords have a default value, so if these are not specified within the block, then the default value is used.
Keyword | Explanation | Default value | Possible values |
---|---|---|---|
DEBUG | Output additional debug statements.
|
0 | 0-4 (int) |
PRESSURE | The total pressure in the gas phase.
|
-1 (Take starting pressures) | float > 0 or negative value |
Keyword | Explanation | Default value | Possible values |
---|---|---|---|
RERUN_OUTPUT | Define the folder used for re-running sensitivity analysis and graphs | run | string |
RERUN_GRAPH | Whether to re-run graphs from the RERUN_OUTPUT folder
|
0 | 0 or 1 |
ABSTOL | Set the absolute tolerance for a TPD run | 1e-12 | float > 0 |
RELTOL | Set the relative tolerance for a TPD run | 1e-12 | float > 0 |
CACHE_WORKPOINT | Reuse the sequencerun results as a workpoint in additional routines like DRC.
|
1 | 0 or 1 |
NUMDIFF | Resolution of perturbations at each side of the workpoint. | 2 | int >= 1 |
ORDERSDIFF | Step size used in the linear fitting of reaction orders (fractional pressure)
|
0.01 | float > 0 |
EACTDIFF | Step size used in the linear fitting of the apparent activation energy (fractional temperature)
|
0.0001 | float > 0 |
DRCDIFF | Step size used in the linear fitting for the degree of rate control analysis (fractional k)
|
0.01 | float > 0 |
TDRCDIFF | Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol)
|
1 | float > 0 |
BOOSTER | Multiplier used to speed-up reaction rates; sometimes leads to faster convergence towards the steady-state solution (time is scaled inversely to compensate) | 1.0 (regular speed) | float > 0 |
SOLVERTYPE | Type of integration method to use for solving the system of ordinary differential equations
|
1 (BDF) | 1 or 2 (int) |
SOLSTOPTIME | Specificies when the solver should re-evaluate the Jacobian matrix. A value of 1 means at every time step. | 1.0 | |
SOLMAXSTEP | Maximum number of internal steps the solver is allowed to take. | 5000 | |
SOLTESTFAIL | Maximum number of test failures before the solver gives up | 70 | |
SOLCONVFAIL | Maximum number of convergence failures before the solver gives up | 100 | |
PRECISION | Amount of significant digits to use in output. | 10 | |
USETIMESTAMP | Whether to place the output in a new folder which name is based on the current time stamp. If 0, then all output is placed inside a 'RUN' folder. | 1 | |
ORDERS | Whether to calculate the reaction orders. (You need to set KEYCOMPONENTS for this) | 1 | |
EACT | Whether to calculate the apparent activation energy. (You need to set KEYCOMPONENTS for this) | 1 | |
DRC | Whether to perform a degree of rate control analysis. (You need to set KEYCOMPONENTS for this) | 1 | |
TDRC | Whether to perform a thermodynamic degree of rate control analysis. (You need to set KEYCOMPONENTS for this) | 1 | |
REAGENTS | List of reagents for which the reaction orders will be calculated | NULL | |
KEYCOMPONENTS | List of compounds on which the reaction orders, apparent activation energy, DRC, DSC and/or TDRC analysis should be based | NULL | |
GNUPLOT | Whether to output GNUPlot-style graphs | 0 | |
MAKEPLOTS | Whether to create plots | 1 |
Graphs block
Inside the graphs block, you can set the colors used in the non-GNUPLOT graphs for specific components. On each line, you place the compound between curly brackets followed by the RGB color code. For example:
&graphs # fix colors for particular compounds {A*} #E74C3D {B*} #F29C1F {C*} #287FB9 {*} #15A086
Selectivity block
Inside the selectivity block, you can specify mole balances on which basis you calculate selectivity and degree of selectivity control graphs. You need to specify a name, a key component and one or more products (typically more than one, else the concept of selectivity is rather trivial). The name will be used in the generation of the corresponding graph file, so please use a safe name (i.e. no spaces and no special characters!)
&selectivity species_balance; {A}; {E},{F}
In the above example, the name of the mole balance block is "species_balance", the key component is A and the products of interest are E and F. A detailed example on how to use this block is explained here.
Stoichiometry
Often, the stoichiometry of the key component and the products is not simply a 1:1 ratio. To account for this difference, you need to put the stoichiometric coefficient in front the compound. The stoichiometric coefficient is simply the number of key components which need to be consumed to produce one product. To illustrate this, below an example for CO hydrogenation towards C1-C3 hydrocarbons is provided.
&selectivity carbon_balance; {CO}; {CH4}, 2{CH2CH2}, 2{CH3CH3}, 3{CH3CH2CH3}, 3{CH2CHCH3}