Difference between revisions of "Keywords and settings new"
Line 6: | Line 6: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+List of common keywords and their meaning | + | |+List of common keywords and their meaning. |
! Keyword | ! Keyword | ||
! Explanation | ! Explanation | ||
Line 14: | Line 14: | ||
| DEBUG | | DEBUG | ||
| Output additional debug statements. | | Output additional debug statements. | ||
− | * 0 : | + | * 0 : No debug statements. |
− | * 1-4 : | + | * 1-4 : Various levels of debug statements. |
| 0 | | 0 | ||
| 0-4 (int) | | 0-4 (int) | ||
Line 28: | Line 28: | ||
| USETIMESTAMP | | USETIMESTAMP | ||
| Whether to place the output in a new folder which name is based on the current time stamp. | | Whether to place the output in a new folder which name is based on the current time stamp. | ||
− | * 0 : Place all output in a folder called "run" | + | * 0 : Place all output in a folder called "run". |
− | * 1 : Generate a folder following the format "<RUNTYPE>_<yyyy>_<mm>_<dd>_<hhmm>" | + | * 1 : Generate a folder following the format "<RUNTYPE>_<yyyy>_<mm>_<dd>_<hhmm>". |
| 1 | | 1 | ||
| 0 or 1 | | 0 or 1 | ||
Line 68: | Line 68: | ||
|- | |- | ||
| REAGENTS | | REAGENTS | ||
− | | List of reagents for which the reaction orders will be calculated | + | | List of reagents for which the reaction orders will be calculated. |
| ''NULL'' | | ''NULL'' | ||
| {<Cmp1>},{<Cmp2>},... | | {<Cmp1>},{<Cmp2>},... | ||
|- | |- | ||
| KEYCOMPONENTS | | KEYCOMPONENTS | ||
− | | List of compounds on which the reaction orders, apparent activation energy, DRC, DSC and/or TDRC analysis should be based | + | | List of compounds on which the reaction orders, apparent activation energy, DRC, DSC and/or TDRC analysis should be based. |
| ''NULL'' | | ''NULL'' | ||
| ''x''{<Cmp1>},''x''{<Cmp2>},... | | ''x''{<Cmp1>},''x''{<Cmp2>},... | ||
|- | |- | ||
| PDRC | | PDRC | ||
− | | Whether to include DRC results for every selectivity-component | + | | Whether to include DRC results for every selectivity-component. |
:- Requires DRC = 2 | :- Requires DRC = 2 | ||
:- Requires selectivity block | :- Requires selectivity block | ||
− | * 0 : Only output DRC results for KEYCOMPONENTS | + | * 0 : Only output DRC results for KEYCOMPONENTS. |
− | * 1 : Also output DRC results per component in selectivity blocks | + | * 1 : Also output DRC results per component in selectivity blocks. |
| 1 | | 1 | ||
| 0 or 1 | | 0 or 1 | ||
|- | |- | ||
| DSC | | DSC | ||
− | | Whether to include DSC results for every selectivity-component | + | | Whether to include DSC results for every selectivity-component. |
:- Requires DRC > 0 | :- Requires DRC > 0 | ||
:- Requires selectivity block | :- Requires selectivity block | ||
− | * 0 : No DSC output | + | * 0 : No DSC output. |
− | * 1 : Output DSC results per component in selectivity blocks | + | * 1 : Output DSC results per component in selectivity blocks. |
| 1 | | 1 | ||
| 0 or 1 | | 0 or 1 | ||
Line 97: | Line 97: | ||
|- | |- | ||
| DCGC | | DCGC | ||
− | | Whether to include DCGC results for every ASF block | + | | Whether to include DCGC results for every ASF block. |
:- Requires DRC = 2 | :- Requires DRC = 2 | ||
:- Requires ASF block | :- Requires ASF block | ||
− | * 0 : No DCGC output | + | * 0 : No DCGC output. |
− | * 1 : Output DCGC results per ASF block | + | * 1 : Output DCGC results per ASF block. |
| 1 | | 1 | ||
| 0 or 1 | | 0 or 1 | ||
Line 108: | Line 108: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+List of less common keywords and their meaning | + | |+List of less common keywords and their meaning. |
! Keyword | ! Keyword | ||
! Explanation | ! Explanation | ||
Line 115: | Line 115: | ||
|- | |- | ||
| RERUN_OUTPUT | | RERUN_OUTPUT | ||
− | | Define the folder used for re-running sensitivity analysis and graphs | + | | Define the folder used for re-running sensitivity analysis and graphs. |
| run | | run | ||
| string | | string | ||
|- | |- | ||
| RERUN_GRAPH | | RERUN_GRAPH | ||
− | | Whether to re-run graphs from the RERUN_OUTPUT folder | + | | Whether to re-run graphs from the RERUN_OUTPUT folder. |
− | * 0 : Regular mkmcxx run | + | * 0 : Regular mkmcxx run. |
− | * 1 : Re-run graphs | + | * 1 : Re-run graphs. |
| 0 | | 0 | ||
| 0 or 1 | | 0 or 1 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| CACHE_WORKPOINT | | CACHE_WORKPOINT | ||
Line 149: | Line 139: | ||
|- | |- | ||
| ORDERSDIFF | | ORDERSDIFF | ||
− | | Step size used in the linear fitting of reaction orders (fractional pressure) | + | | Step size used in the linear fitting of reaction orders (fractional pressure). |
* Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 | * Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 | ||
| 0.01 | | 0.01 | ||
Line 155: | Line 145: | ||
|- | |- | ||
| EACTDIFF | | EACTDIFF | ||
− | | Step size used in the linear fitting of the apparent activation energy (fractional temperature) | + | | Step size used in the linear fitting of the apparent activation energy (fractional temperature). |
* Example values: Wide = 0.001 | Normal = 0.0001 | Tight = 0.00001 | * Example values: Wide = 0.001 | Normal = 0.0001 | Tight = 0.00001 | ||
| 0.0001 | | 0.0001 | ||
Line 161: | Line 151: | ||
|- | |- | ||
| DRCDIFF | | DRCDIFF | ||
− | | Step size used in the linear fitting for the degree of rate control analysis (fractional k) | + | | Step size used in the linear fitting for the degree of rate control analysis (fractional k). |
* Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 | * Example values: Wide = 0.1 | Normal = 0.01 | Tight = 0.001 | ||
| 0.01 | | 0.01 | ||
Line 167: | Line 157: | ||
|- | |- | ||
| TDRCDIFF | | TDRCDIFF | ||
− | | Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol) | + | | Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol). |
* Example values: Wide = 10 | Normal = 1 | Tight = 0.1 | * Example values: Wide = 10 | Normal = 1 | Tight = 0.1 | ||
| 1 | | 1 | ||
Line 173: | Line 163: | ||
|- | |- | ||
| BOOSTER | | BOOSTER | ||
− | | Multiplier used to speed-up reaction rates; sometimes leads to faster convergence towards the steady-state solution (time is scaled inversely to compensate) | + | | Multiplier used to speed-up reaction rates; sometimes leads to faster convergence towards the steady-state solution (time is scaled inversely to compensate). |
| 1.0 (regular speed) | | 1.0 (regular speed) | ||
| float > 0 | | float > 0 | ||
|- | |- | ||
| SOLVERTYPE | | SOLVERTYPE | ||
− | | Type of integration method to use for solving the system of ordinary differential equations | + | | Type of integration method to use for solving the system of ordinary differential equations. |
* 1 : BDF | * 1 : BDF | ||
* 2 : ADAMS | * 2 : ADAMS | ||
Line 198: | Line 188: | ||
|- | |- | ||
| SOLTESTFAIL | | SOLTESTFAIL | ||
− | | Maximum number of test failures before the solver gives up | + | | Maximum number of test failures before the solver gives up. |
| 70 | | 70 | ||
| int > 0 | | int > 0 | ||
|- | |- | ||
| SOLCONVFAIL | | SOLCONVFAIL | ||
− | | Maximum number of convergence failures before the solver gives up | + | | Maximum number of convergence failures before the solver gives up. |
| 100 | | 100 | ||
| int > 0 | | int > 0 | ||
Line 220: | Line 210: | ||
|- | |- | ||
| DRCBIN | | DRCBIN | ||
− | | Store binary data of sequencerun to allow re-plotting data | + | | Store binary data of sequencerun to allow re-plotting data. |
− | * 0 : Don't store binary data | + | * 0 : Don't store binary data. |
− | * 1 : Store binary data | + | * 1 : Store binary data. |
| 0 | | 0 | ||
| 0 or 1 | | 0 or 1 | ||
|- | |- | ||
| MAKEPLOTS | | MAKEPLOTS | ||
− | | Whether to create .png and .pdf files of plots | + | | Whether to create .png and .pdf files of plots. |
* 0 : no | * 0 : no | ||
* 1 : yes | * 1 : yes | ||
Line 236: | Line 226: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+List of deprecated keywords and their meaning | + | |+List of TPD-specific keywords and their meaning. |
+ | ! Keyword | ||
+ | ! Explanation | ||
+ | ! Default value | ||
+ | ! Possible values | ||
+ | |- | ||
+ | | ABSTOL | ||
+ | | Set the absolute tolerance for a TPD run. | ||
+ | | 1e-12 | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | RELTOL | ||
+ | | Set the relative tolerance for a TPD run. | ||
+ | | 1e-8 | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | TIME | ||
+ | | Set the simulation time for a TPD run. | ||
+ | | NULL | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | TSTART | ||
+ | | Starting temperature for a TPD run. | ||
+ | | NULL | ||
+ | | float > 0 | ||
+ | |- | ||
+ | | TEND | ||
+ | | Temperature reached at the end of the TPD run. | ||
+ | | NULL | ||
+ | | float > 0 | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |+List of deprecated keywords and their meaning. | ||
! Keyword | ! Keyword | ||
! Explanation | ! Explanation | ||
|- | |- | ||
| GNUPLOT | | GNUPLOT | ||
− | | Whether to output GNUPlot-style graphs | + | | Whether to output GNUPlot-style graphs. |
|- | |- | ||
|} | |} |
Revision as of 13:59, 23 March 2020
Settings block
The list below is an overview of all the keywords that can be placed inside the &settings
block. All keywords have a default value, so if these are not specified within the block, then the default value is used.
Keyword | Explanation | Default value | Possible values |
---|---|---|---|
DEBUG | Output additional debug statements.
|
0 | 0-4 (int) |
PRESSURE | The total pressure in the gas phase.
|
-1 (Take starting pressures) | float > 0 or negative value |
USETIMESTAMP | Whether to place the output in a new folder which name is based on the current time stamp.
|
1 | 0 or 1 |
ORDERS | Whether to calculate the reaction orders.
|
0 | 0 or 1 |
EACT | Whether to calculate the apparent activation energy.
|
0 | 0 or 1 |
DRC | Whether to perform a degree of rate control analysis.
|
0 | 0-2 (int) |
TDRC | Whether to perform a thermodynamic degree of rate control analysis.
|
0 | 0 or 1 |
REAGENTS | List of reagents for which the reaction orders will be calculated. | NULL | {<Cmp1>},{<Cmp2>},... |
KEYCOMPONENTS | List of compounds on which the reaction orders, apparent activation energy, DRC, DSC and/or TDRC analysis should be based. | NULL | x{<Cmp1>},x{<Cmp2>},... |
PDRC | Whether to include DRC results for every selectivity-component.
|
1 | 0 or 1 |
DSC | Whether to include DSC results for every selectivity-component.
|
1 | 0 or 1 |
DCGC | Whether to include DCGC results for every ASF block.
|
1 | 0 or 1 |
Keyword | Explanation | Default value | Possible values |
---|---|---|---|
RERUN_OUTPUT | Define the folder used for re-running sensitivity analysis and graphs. | run | string |
RERUN_GRAPH | Whether to re-run graphs from the RERUN_OUTPUT folder.
|
0 | 0 or 1 |
CACHE_WORKPOINT | Reuse the sequencerun results as a workpoint in additional routines like DRC.
|
1 | 0 or 1 |
NUMDIFF | Resolution of perturbations at each side of the workpoint. | 2 | int >= 1 |
ORDERSDIFF | Step size used in the linear fitting of reaction orders (fractional pressure).
|
0.01 | float > 0 |
EACTDIFF | Step size used in the linear fitting of the apparent activation energy (fractional temperature).
|
0.0001 | float > 0 |
DRCDIFF | Step size used in the linear fitting for the degree of rate control analysis (fractional k).
|
0.01 | float > 0 |
TDRCDIFF | Step size used in the linear fitting for the thermodynamic DRC analysis (absolute dG in J/mol).
|
1 | float > 0 |
BOOSTER | Multiplier used to speed-up reaction rates; sometimes leads to faster convergence towards the steady-state solution (time is scaled inversely to compensate). | 1.0 (regular speed) | float > 0 |
SOLVERTYPE | Type of integration method to use for solving the system of ordinary differential equations.
|
1 (BDF) | 1 or 2 (int) |
SOLSTOPTIME | Specificies when the solver should force re-evaluation of dydt/jac.
|
2 | 0-2 (int) |
SOLMAXSTEP | Maximum number of internal steps the solver is allowed to take. | 5000 | int > 0 |
SOLTESTFAIL | Maximum number of test failures before the solver gives up. | 70 | int > 0 |
SOLCONVFAIL | Maximum number of convergence failures before the solver gives up. | 100 | int > 0 |
PRECISION | Amount of significant digits to use in output. | 10 | int > 0 |
SEQAL | Use the output concentrations from completed runs as input for new runs.
|
0 | 0 or 1 |
DRCBIN | Store binary data of sequencerun to allow re-plotting data.
|
0 | 0 or 1 |
MAKEPLOTS | Whether to create .png and .pdf files of plots.
|
1 | 0 or 1 |
Keyword | Explanation | Default value | Possible values |
---|---|---|---|
ABSTOL | Set the absolute tolerance for a TPD run. | 1e-12 | float > 0 |
RELTOL | Set the relative tolerance for a TPD run. | 1e-8 | float > 0 |
TIME | Set the simulation time for a TPD run. | NULL | float > 0 |
TSTART | Starting temperature for a TPD run. | NULL | float > 0 |
TEND | Temperature reached at the end of the TPD run. | NULL | float > 0 |
Keyword | Explanation |
---|---|
GNUPLOT | Whether to output GNUPlot-style graphs. |
Graphs block
Inside the graphs block, you can set the colors used in the non-GNUPLOT graphs for specific components. On each line, you place the compound between curly brackets followed by the RGB color code. For example:
&graphs # fix colors for particular compounds {A*} #E74C3D {B*} #F29C1F {C*} #287FB9 {*} #15A086
Selectivity block
Inside the selectivity block, you can specify mole balances on which basis you calculate selectivity and degree of selectivity control graphs. You need to specify a name, a key component and one or more products (typically more than one, else the concept of selectivity is rather trivial). The name will be used in the generation of the corresponding graph file, so please use a safe name (i.e. no spaces and no special characters!)
&selectivity species_balance; {A}; {E},{F}
In the above example, the name of the mole balance block is "species_balance", the key component is A and the products of interest are E and F. A detailed example on how to use this block is explained here.
Stoichiometry
Often, the stoichiometry of the key component and the products is not simply a 1:1 ratio. To account for this difference, you need to put the stoichiometric coefficient in front the compound. The stoichiometric coefficient is simply the number of key components which need to be consumed to produce one product. To illustrate this, below an example for CO hydrogenation towards C1-C3 hydrocarbons is provided.
&selectivity carbon_balance; {CO}; {CH4}, 2{CH2CH2}, 2{CH3CH3}, 3{CH3CH2CH3}, 3{CH2CHCH3}